Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Leukemia & Lymphoma ; (12): 23-29, 2020.
Article in Chinese | WPRIM | ID: wpr-799287

ABSTRACT

Objective@#To investigate the drug resistance of kaempferol reversed adriamycin (ADM)-resistant K562/ADM cells in chronic myelogenous leukemia (CML) and its related mechanism.@*Methods@#Methyl thiazolyl tetrazolium (MTT) method was used to detect the toxicity of ADM on K562 and K562/ADM cells for 24 h. The half inhibitory concentration (IC50) of ADM and the drug resistance multiple for 24 h were calculated. MTT method was used to detect the toxicity of kaempferol on K562/ADM cells for 24 h. The 5% inhibitory concentration (IC5) and 10% inhibitory concentration (IC10) of kaempferol for 24 h were calculated to determine the concentration of kaempferol in the subsequent experiments. And the cells untreated by the kaempferol were selected as the control group. The cell inhibition after the treatment of ADM for 24 h of the blank control group and kaempferol intervention group was detected by using MTT method. And then the cell inhibition for 24 h and ADM IC50 for 24 h in the above groups were calculated. The ratio of IC50 in the blank control group and kaempferol group was the reversal drug resistance multiple of kaempferol. The fluorescence intensity of ADM in K562/ADM cells treated by kaempferol was detected by using flow cytometry. Western blotting was used to detect the expressions of P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), phosphorylated p38 (p-p38), and total p38 (t-p38) protein in K562/ADM cells after the treatment of kaempferol, the specific inhibitor of p38-MAPK signaling pathway SB202190, and the combination of kaempferol and SB202190.@*Results@#After the treatment of ADM for 24 h, the IC50 value of K562 and K562/ADM cells was (0.9±0.6), (28.1 ±3.5) μg/ml, respectively. The drug resistance multiple of K562/ADM cells on the treatment of ADM for 24 h was 31.16 compared with the K562 cells. MTT method showed that kaempferol inhibited the proliferation of K562/ADM cells in a dose-dependent manner. According to the IC5 and IC10, 0.5 μmol/L and 1.0 μmol/L kaempferol were determined to do the subsequent experiments. After the combined interaction of kaempferol and ADM for 24 h, the ADM IC50 of K562/ADM cells in the blank control group, 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was (33.7±5.7), (21.4±0.6), (15.9±1.8) μg/ml, respectively (F = 30.85, P < 0.05), and there was a statistical difference of pairwise comparison (both P < 0.05). The reversal drug resistance multiple of K562/ADM cells for 24 h in 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was 1.58 and 2.12, respectively. Flow cytometry results showed that the mean fluorescence intensity (MFI) of ADM in the blank control group, 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was 138.4±8.9, 154.3±2.2, 165.7±4.8, respectively, and the difference was statistically significant (F = 161.48, P < 0.05). Compared with the blank control group, after treatment of K562/ADM cells with 0.5 μmol/L and 1.0 μmol/L kaempferol for 24 h, the relative expressions of P-gp, MRP1 and p-p38 protein were decreased in K562/ADM cells (all P < 0.05), but there was no statistical difference in the expression of t-p38 protein (P > 0.05); SB202190 could reduce the relative expressions of P-gp, MRP1 and p-p38 protein (all P < 0.05); after the treatment of SB202190 combined with different concentration of kaempferol, the relative expressions of P-gp, MRP1 and p-p38 protein in K562/ADM cells did not decrease (P > 0.05).@*Conclusions@#Kaempferol can decrease the relative expressions of P-gp and MRP1 in K562/ADM cells by inhibiting p38-MAPK pathway, so as to increase the concentrations of ADM and to reverse the drug resistance of K562/ADM cells.

2.
Journal of Leukemia & Lymphoma ; (12): 23-29, 2020.
Article in Chinese | WPRIM | ID: wpr-862788

ABSTRACT

Objective:To investigate the drug resistance of kaempferol reversed adriamycin (ADM)-resistant K562/ADM cells in chronic myelogenous leukemia (CML) and its related mechanism.Methods:Methyl thiazolyl tetrazolium (MTT) method was used to detect the toxicity of ADM on K562 and K562/ADM cells for 24 h. The half inhibitory concentration ( IC50) of ADM and the drug resistance multiple for 24 h were calculated. MTT method was used to detect the toxicity of kaempferol on K562/ADM cells for 24 h. The 5% inhibitory concentration ( IC5) and 10% inhibitory concentration ( IC10) of kaempferol for 24 h were calculated to determine the concentration of kaempferol in the subsequent experiments. And the cells untreated by the kaempferol were selected as the control group. The cell inhibition after the treatment of ADM for 24 h of the blank control group and kaempferol intervention group was detected by using MTT method. And then the cell inhibition for 24 h and ADM IC50 for 24 h in the above groups were calculated. The ratio of IC50 in the blank control group and kaempferol group was the reversal drug resistance multiple of kaempferol. The fluorescence intensity of ADM in K562/ADM cells treated by kaempferol was detected by using flow cytometry. Western blotting was used to detect the expressions of P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), phosphorylated p38 (p-p38), and total p38 (t-p38) protein in K562/ADM cells after the treatment of kaempferol, the specific inhibitor of p38-MAPK signaling pathway SB202190, and the combination of kaempferol and SB202190. Results:After the treatment of ADM for 24 h, the IC50 value of K562 and K562/ADM cells was (0.9±0.6), (28.1 ±3.5) μg/ml, respectively. The drug resistance multiple of K562/ADM cells on the treatment of ADM for 24 h was 31.16 compared with the K562 cells. MTT method showed that kaempferol inhibited the proliferation of K562/ADM cells in a dose-dependent manner. According to the IC5 and IC10, 0.5 μmol/L and 1.0 μmol/L kaempferol were determined to do the subsequent experiments. After the combined interaction of kaempferol and ADM for 24 h, the ADM IC50 of K562/ADM cells in the blank control group, 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was (33.7±5.7), (21.4±0.6), (15.9±1.8) μg/ml, respectively ( F = 30.85, P < 0.05), and there was a statistical difference of pairwise comparison (both P < 0.05). The reversal drug resistance multiple of K562/ADM cells for 24 h in 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was 1.58 and 2.12, respectively. Flow cytometry results showed that the mean fluorescence intensity (MFI) of ADM in the blank control group, 0.5 μmol/L kaempferol group and 1.0 μmol/L kaempferol group was 138.4±8.9, 154.3±2.2, 165.7±4.8, respectively, and the difference was statistically significant ( F = 161.48, P < 0.05). Compared with the blank control group, after treatment of K562/ADM cells with 0.5 μmol/L and 1.0 μmol/L kaempferol for 24 h, the relative expressions of P-gp, MRP1 and p-p38 protein were decreased in K562/ADM cells (all P < 0.05), but there was no statistical difference in the expression of t-p38 protein ( P > 0.05); SB202190 could reduce the relative expressions of P-gp, MRP1 and p-p38 protein (all P < 0.05); after the treatment of SB202190 combined with different concentration of kaempferol, the relative expressions of P-gp, MRP1 and p-p38 protein in K562/ADM cells did not decrease ( P > 0.05). Conclusions:Kaempferol can decrease the relative expressions of P-gp and MRP1 in K562/ADM cells by inhibiting p38-MAPK pathway, so as to increase the concentrations of ADM and to reverse the drug resistance of K562/ADM cells.

3.
International Journal of Pediatrics ; (6): 173-176, 2015.
Article in Chinese | WPRIM | ID: wpr-475586

ABSTRACT

Leukemia is a polygenic malignant proliferative disease in the hematopoietic system.Its possible causative genes and gene therapy are one hotspot of the current researches.Sex-determining region Y-related high-mobility-group box transcription factor 4(SOX4) is a member of the group C subfamily of the SOX transcription factors,playing a critical role in the occurrence and development of many tumors such as lung cancer,breast cancer,hepatic carcinoma,gastric cancer and medulloblastoma.Recently,researches have found that SOX4 is significant in the occurrence,treatment and prognosis evaluation of leukemia.This paper reviews the structure and functions of SOX4,its expression and mechanism in leukemia,and its influence on leukemia treatment and prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL